124 research outputs found

    Effects of sex chromosome dosage on corpus callosum morphology in supernumerary sex chromosome aneuploidies.

    Get PDF
    BackgroundSupernumerary sex chromosome aneuploidies (sSCA) are characterized by the presence of one or more additional sex chromosomes in an individual's karyotype; they affect around 1 in 400 individuals. Although there is high variability, each sSCA subtype has a characteristic set of cognitive and physical phenotypes. Here, we investigated the differences in the morphometry of the human corpus callosum (CC) between sex-matched controls 46,XY (N =99), 46,XX (N =93), and six unique sSCA karyotypes: 47,XYY (N =29), 47,XXY (N =58), 48,XXYY (N =20), 47,XXX (N =30), 48,XXXY (N =5), and 49,XXXXY (N =6).MethodsWe investigated CC morphometry using local and global area, local curvature of the CC boundary, and between-landmark distance analysis (BLDA). We hypothesized that CC morphometry would vary differentially along a proposed spectrum of Y:X chromosome ratio with supernumerary Y karyotypes having the largest CC areas and supernumerary X karyotypes having significantly smaller CC areas. To investigate this, we defined an sSCA spectrum based on a descending Y:X karyotype ratio: 47,XYY, 46,XY, 48,XXYY, 47,XXY, 48,XXXY, 49,XXXXY, 46,XX, 47,XXX. We similarly explored the effects of both X and Y chromosome numbers within sex. Results of shape-based metrics were analyzed using permutation tests consisting of 5,000 iterations.ResultsSeveral subregional areas, local curvature, and BLDs differed between groups. Moderate associations were found between area and curvature in relation to the spectrum and X and Y chromosome counts. BLD was strongly associated with X chromosome count in both male and female groups.ConclusionsOur results suggest that X- and Y-linked genes have differential effects on CC morphometry. To our knowledge, this is the first study to compare CC morphometry across these extremely rare groups

    Mapping cortical anatomy in preschool aged children with autism using surface-based morphometry☆

    Get PDF
    The challenges of gathering in-vivo measures of brain anatomy from young children have limited the number of independent studies examining neuroanatomical differences between children with autism and typically developing controls (TDCs) during early life, and almost all studies in this critical developmental window focus on global or lobar measures of brain volume. Using a novel cohort of young males with Autistic Disorder and TDCs aged 2 to 5 years, we (i) tested for group differences in traditional measures of global anatomy (total brain, total white, total gray and total cortical volume), and (ii) employed surface-based methods for cortical morphometry to directly measure the two biologically distinct sub-components of cortical volume (CV) at high spatial resolution—cortical thickness (CT) and surface area (SA). While measures of global brain anatomy did not show statistically significant group differences, children with autism showed focal, and CT-specific anatomical disruptions compared to TDCs, consisting of relative cortical thickening in regions with central roles in behavioral regulation, and the processing of language, biological movement and social information. Our findings demonstrate the focal nature of brain involvement in early autism, and provide more spatially and morphometrically specific anatomical phenotypes for subsequent translational study

    Differential tangential expansion as a mechanism for cortical gyrification.

    Get PDF
    Gyrification, the developmental buckling of the cortex, is not a random process-the forces that mediate expansion do so in such a way as to generate consistent patterns of folds across individuals and even species. Although the origin of these forces is unknown, some theories have suggested that they may be related to external cortical factors such as axonal tension. Here, we investigate an alternative hypothesis, namely, whether the differential tangential expansion of the cortex alone can account for the degree and pattern-specificity of gyrification. Using intrinsic curvature as a measure of differential expansion, we initially explored whether this parameter and the local gyrification index (used to quantify the degree of gyrification) varied in a regional-specific pattern across the cortical surface in a manner that was replicable across independent datasets of neurotypicals. Having confirmed this consistency, we further demonstrated that within each dataset, the degree of intrinsic curvature of the cortex was predictive of the degree of cortical folding at a global and regional level. We conclude that differential expansion is a plausible primary mechanism for gyrification, and propose that this perspective offers a compelling mechanistic account of the co-localization of cytoarchitecture and cortical folds

    Basal ganglia morphometry and repetitive behavior in young children with autism spectrum disorder

    Get PDF
    We investigated repetitive and stereotyped behavior (RSB) and its relationship to morphometric measures of the basal ganglia and thalami in 3-4 year old children with autism spectrum disorder (ASD; n=77) and developmental delay without autism (DD; n=34). Children were assessed through clinical evaluation and parent report using RSB-specific scales extracted from the Autism Diagnostic Observation Schedule (ADOS), the Autism Diagnostic Interview, and the Aberrant Behavior Checklist. A subset of children with ASD (n=45), DD (n=14) and a group of children with typical development (TD; n=25) were also assessed by magnetic resonance imaging (MRI). Children with ASD demonstrated elevated RSB across all measures compared to children with DD. Enlargement of the left and right striatum, more specifically the left and right putamen, and left caudate, was observed in the ASD compared to the TD group. However, nuclei were not significantly enlarged after controlling for cerebral volume. The DD group, in comparison to the ASD group, demonstrated smaller thalami and basal ganglia regions even when scaled for cerebral volume, with the exception of the left striatum, left putamen, and right putamen. Elevated RSB, as measured by the ADOS, was associated with decreased volumes in several brain regions: left thalamus, right globus pallidus, left and right putamen, right striatum and a trend for left globus pallidus and left striatum within the ASD group. These results confirm earlier reports that RSB is common early in the clinical course of ASD and, furthermore, demonstrate that such behaviors may be associated with decreased volumes of the basal ganglia and thalamus

    Adolescent brain and the natural allure of digital media
.

    No full text
    The growing amount of screen time among adolescents has raised concerns about the effects it may have on their physical and psychological health. Although the literature is divided on whether the effects are mostly positive, neutral, or mostly negative, it is likely that the impacts will be highly individualized with a mixture of good and bad consequences for each person. Understanding behavioral and neurobiological phenomena of adolescence may help to guide research and interventions to optimize the benefits and minimize the risks. Particular aspects of adolescent development relevant to the issue include: (i) hunger for human connectedness; (ii) appetite for adventure; and (iii) desire for data.

    • …
    corecore